
15/2/2020 Segmentation fault - Wikipedia

https://en.wikipedia.org/wiki/Segmentation_fault 1/6

Segmentation fault
In computing, a segmentation fault (often shortened to segfault) or access violation is a fault,
or failure condition, raised by hardware with memory protection, notifying an operating system (OS)
the software has attempted to access a restricted area of memory (a memory access violation). On
standard x86 computers, this is a form of general protection fault. The OS kernel will, in response,
usually perform some corrective action, generally passing the fault on to the offending process by
sending the process a signal. Processes can in some cases install a custom signal handler, allowing
them to recover on their own,[1] but otherwise the OS default signal handler is used, generally causing
abnormal termination of the process (a program crash), and sometimes a core dump.

Segmentation faults are a common class of error in programs written in languages like C that provide
low-level memory access. They arise primarily due to errors in use of pointers for virtual memory
addressing, particularly illegal access. Another type of memory access error is a bus error, which also
has various causes, but is today much rarer; these occur primarily due to incorrect physical memory
addressing, or due to misaligned memory access – these are memory references that the hardware
cannot address, rather than references that a process is not allowed to address.

Many programming languages may employ mechanisms designed to avoid segmentation faults and
improve memory safety. For example, the Rust programming language, which appeared in 2010,
employs an 'Ownership'[2] based model to ensure memory safety,[3] and garbage collection has been
employed since around 1960,[4] which avoids certain classes of memory errors which could lead to
segmentation faults.[5]

Overview
Causes
Handling
Examples

Writing to read-only memory
Null pointer dereference
Buffer overflow
Stack overflow

See also
References
External links

A segmentation fault occurs when a program attempts to access a memory location that it is not
allowed to access, or attempts to access a memory location in a way that is not allowed (for example,
attempting to write to a read-only location, or to overwrite part of the operating system).

Contents

Overview

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Fault_(computing)
https://en.wikipedia.org/wiki/Memory_protection
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/General_protection_fault
https://en.wikipedia.org/wiki/Kernel_(computing)
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Signal_(computing)
https://en.wikipedia.org/wiki/Abnormal_termination
https://en.wikipedia.org/wiki/Crash_(computing)
https://en.wikipedia.org/wiki/Core_dump
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Bus_error
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Operating_system

15/2/2020 Segmentation fault - Wikipedia

https://en.wikipedia.org/wiki/Segmentation_fault 2/6

The term "segmentation" has various uses in computing; in the
context of "segmentation fault", a term used since the 1950s, it
refers to the address space of a program. With memory
protection, only the program's own address space is readable, and
of this, only the stack and the read-write portion of the data
segment of a program are writable, while read-only data and the
code segment are not writable. Thus attempting to read outside of
the program's address space, or writing to a read-only segment of
the address space, results in a segmentation fault, hence the
name.

On systems using hardware memory segmentation to provide
virtual memory, a segmentation fault occurs when the hardware
detects an attempt to refer to a non-existent segment, or to refer
to a location outside the bounds of a segment, or to refer to a
location in a fashion not allowed by the permissions granted for
that segment. On systems using only paging, an invalid page fault
generally leads to a segmentation fault, and segmentation faults
and page faults are both faults raised by the virtual memory management system. Segmentation faults
can also occur independently of page faults: illegal access to a valid page is a segmentation fault, but
not an invalid page fault, and segmentation faults can occur in the middle of a page (hence no page
fault), for example in a buffer overflow that stays within a page but illegally overwrites memory.

At the hardware level, the fault is initially raised by the memory management unit (MMU) on illegal
access (if the referenced memory exists), as part of its memory protection feature, or an invalid page
fault (if the referenced memory does not exist). If the problem is not an invalid logical address but
instead an invalid physical address, a bus error is raised instead, though these are not always
distinguished.

At the operating system level, this fault is caught and a signal is passed on to the offending process,
activating the process's handler for that signal. Different operating systems have different signal
names to indicate that a segmentation fault has occurred. On Unix-like operating systems, a signal
called SIGSEGV (abbreviated from segmentation violation) is sent to the offending process. On
Microsoft Windows, the offending process receives a STATUS_ACCESS_VIOLATION exception.

The conditions under which segmentation violations occur and how they manifest themselves are
specific to hardware and the operating system: different hardware raises different faults for given
conditions, and different operating systems convert these to different signals that are passed on to
processes. The proximate cause is a memory access violation, while the underlying cause is generally a
software bug of some sort. Determining the root cause – debugging the bug – can be simple in some
cases, where the program will consistently cause a segmentation fault (e.g., dereferencing a null
pointer), while in other cases the bug can be difficult to reproduce and depend on memory allocation
on each run (e.g., dereferencing a dangling pointer).

The following are some typical causes of a segmentation fault:

Example of human generated signal

A null pointer dereference on
Windows 8

Causes

https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Data_segment
https://en.wikipedia.org/wiki/Code_segment
https://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/Invalid_page_fault
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Invalid_page_fault
https://en.wikipedia.org/wiki/Bus_error
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Root_cause
https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Null_pointer
https://en.wikipedia.org/wiki/Dangling_pointer
https://en.wikipedia.org/wiki/File:FreeBSD_kernel_panic.png
https://en.wikipedia.org/wiki/File:Windows_null_ptr_dereference.png
https://en.wikipedia.org/wiki/Null_pointer
https://en.wikipedia.org/wiki/Dereference_operator
https://en.wikipedia.org/wiki/Windows_8

15/2/2020 Segmentation fault - Wikipedia

https://en.wikipedia.org/wiki/Segmentation_fault 3/6

Attempting to access a nonexistent memory address (outside process's address space)
Attempting to access memory the program does not have rights to (such as kernel structures in
process context)
Attempting to write read-only memory (such as code segment)

These in turn are often caused by programming errors that result in invalid memory access:

Dereferencing a null pointer, which usually points to an address that's not part of the process's
address space
Dereferencing or assigning to an uninitialized pointer (wild pointer, which points to a random
memory address)
Dereferencing or assigning to a freed pointer (dangling pointer, which points to memory that has
been freed/deallocated/deleted)
A buffer overflow
A stack overflow
Attempting to execute a program that does not compile correctly. (Some compilers will output an
executable file despite the presence of compile-time errors.)

In C code, segmentation faults most often occur because of errors in pointer use, particularly in C
dynamic memory allocation. Dereferencing a null pointer will always result in a segmentation fault,
but wild pointers and dangling pointers point to memory that may or may not exist, and may or may
not be readable or writable, and thus can result in transient bugs. For example:

char *p1 = NULL; // Null pointer
char *p2; // Wild pointer: not initialized at all.
char *p3 = malloc(10 * sizeof(char)); // Initialized pointer to allocated memory
 // (assuming malloc did not fail)
free(p3); // p3 is now a dangling pointer, as memory has been freed

Now, dereferencing any of these variables could cause a segmentation fault: dereferencing the null
pointer generally will cause a segfault, while reading from the wild pointer may instead result in
random data but no segfault, and reading from the dangling pointer may result in valid data for a
while, and then random data as it is overwritten.

The default action for a segmentation fault or bus error is abnormal termination of the process that
triggered it. A core file may be generated to aid debugging, and other platform-dependent actions may
also be performed. For example, Linux systems using the grsecurity patch may log SIGSEGV signals
in order to monitor for possible intrusion attempts using buffer overflows.

Writing to read-only memory raises a segmentation fault. At the level of code errors, this occurs when
the program writes to part of its own code segment or the read-only portion of the data segment, as
these are loaded by the OS into read-only memory.

Handling

Examples

Writing to read-only memory

https://en.wikipedia.org/wiki/Null_pointer
https://en.wikipedia.org/wiki/Wild_pointer
https://en.wikipedia.org/wiki/Dangling_pointer
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Stack_overflow
https://en.wikipedia.org/wiki/Executable_file
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/Abnormal_termination
https://en.wikipedia.org/wiki/Core_file
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Grsecurity
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Code_segment
https://en.wikipedia.org/wiki/Data_segment

15/2/2020 Segmentation fault - Wikipedia

https://en.wikipedia.org/wiki/Segmentation_fault 4/6

Here is an example of ANSI C code that will generally cause a
segmentation fault on platforms with memory protection. It
attempts to modify a string literal, which is undefined behavior
according to the ANSI C standard. Most compilers will not catch
this at compile time, and instead compile this to executable code
that will crash:

int main(void)
{
 char *s = "hello world";
 *s = 'H';
}

When the program containing this code is compiled, the string
"hello world" is placed in the rodata section of the program
executable file: the read-only section of the data segment. When
loaded, the operating system places it with other strings and
constant data in a read-only segment of memory. When executed,
a variable, s, is set to point to the string's location, and an attempt
is made to write an H character through the variable into the
memory, causing a segmentation fault. Compiling such a program with a compiler that does not check
for the assignment of read-only locations at compile time, and running it on a Unix-like operating
system produces the following runtime error:

$ gcc segfault.c -g -o segfault
$./segfault
Segmentation fault

Backtrace of the core file from GDB:

Program received signal SIGSEGV, Segmentation fault.
0x1c0005c2 in main () at segfault.c:6
6 *s = 'H';

This code can be corrected by using an array instead of a character pointer, as this allocates memory
on stack and initializes it to the value of the string literal:

char s[] = "hello world";
s[0] = 'H'; // equivalently, *s = 'H';

Even though string literals should not be modified (this has undefined behavior in the C standard), in
C they are of static char [] type,[6][7][8] so there is no implicit conversion in the original code
(which points a char * at that array), while in C++ they are of static const char [] type, and
thus there is an implicit conversion, so compilers will generally catch this particular error.

In C and C-like languages, null pointers are used to mean "pointer to no object" and as an error
indicator, and dereferencing a null pointer (a read or write through a null pointer) is a very common
program error. The C standard does not say that the null pointer is the same as the pointer to memory

Segmentation fault on an EMV
keypad

Null pointer dereference

https://en.wikipedia.org/wiki/ANSI_C
https://en.wikipedia.org/wiki/String_literal
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Rodata
https://en.wikipedia.org/wiki/Executable_file
https://en.wikipedia.org/wiki/Data_segment
https://en.wikipedia.org/wiki/Constant_(programming)
https://en.wikipedia.org/wiki/Runtime_error
https://en.wikipedia.org/wiki/Backtrace
https://en.wikipedia.org/wiki/GDB
https://en.wikipedia.org/wiki/Null_pointer
https://en.wikipedia.org/wiki/Dereferencing
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/File:Card_reader_segfault.jpg
https://en.wikipedia.org/wiki/EMV

15/2/2020 Segmentation fault - Wikipedia

https://en.wikipedia.org/wiki/Segmentation_fault 5/6

address 0, though that may be the case in practice. Most operating systems map the null pointer's
address such that accessing it causes a segmentation fault. This behavior is not guaranteed by the C
standard. Dereferencing a null pointer is undefined behavior in C, and a conforming implementation
is allowed to assume that any pointer that is dereferenced is not null.

int *ptr = NULL;
printf("%d", *ptr);

This sample code creates a null pointer, and then tries to access its value (read the value). Doing so
causes a segmentation fault at runtime on many operating systems.

Dereferencing a null pointer and then assigning to it (writing a value to a non-existent target) also
usually causes a segmentation fault:

int *ptr = NULL;
*ptr = 1;

The following code includes a null pointer dereference, but when compiled will often not result in a
segmentation fault, as the value is unused and thus the dereference will often be optimized away by
dead code elimination:

int *ptr = NULL;
*ptr;

Another example is recursion without a base case:

int main(void)
{
 main();
 return 0;
}

which causes the stack to overflow which results in a segmentation fault.[9] Infinite recursion may not
necessarily result in a stack overflow depending on the language, optimizations performed by the
compiler and the exact structure of a code. In this case, the behavior of unreachable code (the return
statement) is undefined, so the compiler can eliminate it and use a tail call optimization that might
result in no stack usage. Other optimizations could include translating the recursion into iteration,
which given the structure of the example function would result in the program running forever, while
probably not overflowing its stack.

Core dump
General protection fault

Buffer overflow

Stack overflow

See also

https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Undefined_behavior
https://en.wikipedia.org/wiki/Null_pointer
https://en.wikipedia.org/wiki/Dead_code_elimination
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Stack_overflow
https://en.wikipedia.org/wiki/Tail_call
https://en.wikipedia.org/wiki/Core_dump
https://en.wikipedia.org/wiki/General_protection_fault

15/2/2020 Segmentation fault - Wikipedia

https://en.wikipedia.org/wiki/Segmentation_fault 6/6

Page fault
Storage violation
Guru Meditation

1. Expert C programming: deep C secrets By Peter Van der Linden, page 188
2. The Rust Programming Language - Ownership (http://doc.rust-lang.org/book/ownership.html)
3. Fearless Concurrency with Rust - The Rust Programming Language Blog (http://blog.rust-lang.or

g/2015/04/10/Fearless-Concurrency.html)
4. "Recursive functions of symbolic expressions and their computation by machine, Part I" (http://ww

w-formal.stanford.edu/jmc/recursive.html). Retrieved 2018-09-22.
5. Dhurjati, Dinakar; Kowshik, Sumant; Adve, Vikram; Lattner, Chris (1 January 2003). "Memory

Safety Without Runtime Checks or Garbage Collection" (http://llvm.org/pubs/2003-05-05-LCTES0
3-CodeSafety.pdf) (PDF). Proceedings of the 2003 ACM SIGPLAN Conference on Language,
Compiler, and Tool for Embedded Systems. ACM: 69–80. doi:10.1145/780732.780743 (https://doi.
org/10.1145%2F780732.780743). Retrieved 2018-09-22.

6. "6.1.4 String literals". ISO/IEC 9899:1990 - Programming languages -- C.
7. "6.4.5 String literals". ISO/IEC 9899:1999 - Programming languages -- C.
8. "6.4.5 String literals". ISO/IEC 9899:2011 - Programming languages -- C (http://www.iso-9899.info/

n1570.html#6.4.5p6).
9. What is the difference between a segmentation fault and a stack overflow? (https://stackoverflow.c

om/questions/2685413/what-is-the-difference-between-a-segmentation-fault-and-a-stack-overflo
w/2685434#2685434) at Stack Overflow

Process: focus boundary and segmentation fault (https://www.encious.com/process)
A FAQ: User contributed answers regarding the definition of a segmentation fault (http://www.faqs.
org/qa/qa-673.html)
A "null pointer" explained (http://c-faq.com/null/null1.html)
Answer to: NULL is guaranteed to be 0, but the null pointer is not? (http://c-faq.com/null/varieties.
html)
The Open Group Base Specifications Issue 6 signal.h (http://www.opengroup.org/onlinepubs/0096
95399/basedefs/signal.h.html)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Segmentation_fault&oldid=932034164"

This page was last edited on 23 December 2019, at 00:24 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

References

External links

https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Storage_violation
https://en.wikipedia.org/wiki/Guru_Meditation
http://doc.rust-lang.org/book/ownership.html
http://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html
http://www-formal.stanford.edu/jmc/recursive.html
http://llvm.org/pubs/2003-05-05-LCTES03-CodeSafety.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F780732.780743
http://www.iso-9899.info/n1570.html#6.4.5p6
https://stackoverflow.com/questions/2685413/what-is-the-difference-between-a-segmentation-fault-and-a-stack-overflow/2685434#2685434
https://en.wikipedia.org/wiki/Stack_Overflow
https://www.encious.com/process
http://www.faqs.org/qa/qa-673.html
http://c-faq.com/null/null1.html
http://c-faq.com/null/varieties.html
http://www.opengroup.org/onlinepubs/009695399/basedefs/signal.h.html
https://en.wikipedia.org/w/index.php?title=Segmentation_fault&oldid=932034164
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

